Placental mitochondrial methylation and exposure to airborne particulate matter in the early life environment: An ENVIRONAGE birth cohort study

نویسندگان

  • Bram G Janssen
  • Hyang-Min Byun
  • Wilfried Gyselaers
  • Wouter Lefebvre
  • Andrea A Baccarelli
  • Tim S Nawrot
چکیده

Most research to date has focused on epigenetic modifications in the nuclear genome, with little attention devoted to mitochondrial DNA (mtDNA). Placental mtDNA content has been shown to respond to environmental exposures that induce oxidative stress, including airborne particulate matter (PM). Damaged or non-functioning mitochondria are specifically degraded through mitophagy, exemplified by lower mtDNA content, and could be primed by epigenetic modifications in the mtDNA. We studied placental mtDNA methylation in the context of the early life exposome. We investigated placental tissue from 381 mother-newborn pairs that were enrolled in the ENVIRONAGE birth cohort. We determined mtDNA methylation by bisulfite-pyrosequencing in 2 regions, i.e., the D-loop control region and 12S rRNA (MT-RNR1), and measured mtDNA content by qPCR. PM2.5 exposure was calculated for each participant's home address using a dispersion model. An interquartile range (IQR) increment in PM2.5 exposure over the entire pregnancy was positively associated with mtDNA methylation (MT-RNR1: +0.91%, P = 0.01 and D-loop: +0.21%, P = 0.05) and inversely associated with mtDNA content (relative change of -15.60%, P = 0.001) in placental tissue. mtDNA methylation was estimated to mediate 54% [P = 0.01 (MT-RNR1)] and 27% [P = 0.06 (D-loop)] of the inverse association between PM2.5 exposure and mtDNA content. This study provides new insight into the mechanisms of altered mitochondrial function in the early life environment. Epigenetic modifications in the mitochondrial genome, especially in the MT-RNR1 region, substantially mediate the association between PM2.5 exposure during gestation and placental mtDNA content, which could reflect signs of mitophagy and mitochondrial death.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Placental Leptin Promoter Methylation in Association with Fine Particulate Matter Air Pollution during Pregnancy and Placental Nitrosative Stress at Birth in the ENVIRONAGE Cohort

BACKGROUND Particulate matter with a diameter ≤ 2.5 μm (PM2.5) affects human fetal development during pregnancy. Oxidative stress is a putative mechanism by which PM2.5 may exert its effects. Leptin (LEP) is an energy-regulating hormone involved in fetal growth and development. OBJECTIVES We investigated in placental tissue whether DNA methylation of the LEP promoter is associated with PM2.5 ...

متن کامل

Placental DNA methylation as a proxy for fetal neurodevelopment and sex-specific associations with in utero particulate air pollution

Background and aims Exposure to particulate matter (PM) air pollution during pregnancy may affect human fetal development. Epigenetic mechanisms are believed to play an essential role in the developmental changes during early life. Within the ENVIRONAGE birth cohort, we investigated whether in utero exposure to PM is associated with differences in placental DNA methylation of genes involved in ...

متن کامل

Placental nitrosative stress and in utero exposure to particulate matter

Background and aims A wide variety of adverse health effects on both fetuses and neonates have been ascribed to particulate matter (PM) air pollution. Recent evidence suggests that PM exposure results in increased oxidative and nitrosative stress. In the ENVIRONAGE birth cohort, we investigated the association of placental 3-nitrotyrosine (3-NT) with PM exposure during various time windows of p...

متن کامل

Newborn sex-specific transcriptome signatures and gestational exposure to fine particles: findings from the ENVIRONAGE birth cohort

BACKGROUND Air pollution exposure during pregnancy has been associated with adverse birth outcomes and health problems later in life. We investigated sex-specific transcriptomic responses to gestational long- and short-term exposure to particulate matter with a diameter < 2.5 μm (PM2.5) in order to elucidate potential underlying mechanisms of action. METHODS Whole genome gene expression was i...

متن کامل

Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach

Particulate matter (PM) exposure during in utero life may entail adverse health outcomes in later-life. Air pollution's adverse effects are known to alter gene expression profiles, which can be regulated by microRNAs (miRNAs). We investigate the potential influence of air pollution exposure in prenatal life on placental miRNA expression. Within the framework of the ENVIRONAGE birth cohort, we m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015